Local nearest neighbour classification with applications to semi-supervised learning
نویسندگان
چکیده
منابع مشابه
Local nearest neighbour classification with applications to semi-supervised learning
We derive a new asymptotic expansion for the global excess risk of a local k-nearest neighbour classifier, where the choice of k may depend upon the test point. This expansion elucidates conditions under which the dominant contribution to the excess risk comes from the locus of points at which each class label is equally likely to occur, but we also show that if these conditions are not satisfi...
متن کاملNearest Neighbour Classification with Background Knowledge Extended to Semi-supervised Learning
Semi supervised methods involve converting unlabelled data into high quality labelled data that can be used to improve the performance of conventional supervised methods that had previously been given a small training set. Unlabelled data has also been shown to be helpful in a supervised setting called ‘bridging’ where unlabelled data have been used to help relate labelled instances to those th...
متن کاملNearest Neighbour Classification with Monotonicity Constraints
In many application areas of machine learning, prior knowledge concerning the monotonicity of relations between the response variable and predictor variables is readily available. Monotonicity may also be an important model requirement with a view toward explaining and justifying decisions, such as acceptance/rejection decisions. We propose a modified nearest neighbour algorithm for the constru...
متن کاملFuzzy-Rough Nearest Neighbour Classification
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...
متن کاملEvolutionary Nearest Neighbour Classification Framework
Data classification attempts to assign a category or a class label to an unknown data object based on an available similar data set with class labels already assigned. K nearest neighbor (KNN) is a widely used classification technique in data mining. KNN assigns the majority class label of its closest neighbours to an unknown object, when classifying an unknown object. The computational efficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2020
ISSN: 0090-5364
DOI: 10.1214/19-aos1868